
4 CROSSTALK The Journal of Defense Software Engineering December 1997

The Ada initiative was under-
taken to meet the special soft-
ware needs of the DoD. Defense

software systems have high assurance
and high reliability requirements and are
characterized by long procurement times
and long lifecycles. None of the recent
policy changes have changed DoD soft-
ware characteristics.

Ada has unquestionably been a tech-
nical success. The successful revision,
Ada 95, is an International Organization
for Standardization standard distributed,
object-oriented programming language
designed for use in high assurance appli-
cations.

A major reason for the development
of Ada was the proliferation of high-
order programming languages in use by
the DoD in the mid-1970s. It is com-
monly estimated that more than 450
different high-order languages were in
use in 1975. As shown in Figure 1, the
number of high-order languages in use
in the DoD has significantly declined.

More important, more than 90 per-
cent of both weapons systems and auto-
mated information systems (AISs) are
implemented in one of seven languages.
More than a third of our weapons sys-
tems are implemented in Ada as shown
in Figure 2. The existence of at least 50
million lines of Ada code in operational
war-fighting software has been verified.

Twenty-two percent of all DoD AISs
are coded in Ada as shown in Figure 3. It
should be noted that almost 60 per-
cent of all DoD AISs are still coded in
COBOL. This is significant because

this illustrates the long lifecycles of DoD
software.

Ada is the most widely used pro-
gramming language in the weapons
systems world and second only to CO-
BOL in the AIS world. Given the long
lifecycles of DoD systems, it is clear that
systems coded in Ada will play a key
war-fighting role well into the next cen-
tury. For this reason, a lot of the debates
on Ada are moot. Regardless of what
happens in the short term, we will go to
war with weapons systems written in
Ada well into the next century.

Despite the successful use of Ada in
many major projects, the use of Ada has
remained somewhat controversial. The
technical merits of Ada are not in serious
doubt, rather, most concerns and com-
plaints and general nay saying has come
from managers, not engineers.

Nonetheless, the practice of software
engineering has matured since Ada was
first fielded and in that context, retired
Lt. Gen. Emmett Paige Jr., assistant
secretary of defense for command, con-
trol, computers, and intelligence (ASD/
C3I), directed a study by the Computer
Science and Telecommunications Board
of the National Research Council
(NRC) entitled Ada and Beyond, Soft-
ware Policies for the Department of De-
fense.

The NRC Report
If you have not read the NCR report,
you should do so. You can link to an on-
line version via the AdaIC Web page,
http://www.sw-eng.falls-church.va.us.

The NRC study group was chaired by
Barry Boehm who is the internationally
recognized expert on software metrics.
The solid explanation of Ada’s reliability
and suitability for warfighting software
must not be ignored.

It is unclear what the final impact of
the NRC report will be. The study find-
ings may be summarized as follows:
• Ada gives DoD a competitive advan-

tage in warfighting software applica-
tions.

• The current Ada requirement is
overly broad in application.

• The current Ada requirement over-
emphasizes programming language
considerations.

• Ada requirement and waiver process
is unevenly implemented.

• For Ada to remain the strongest
programming language for war-
fighting software, DoD must provide
technology and infrastructure sup-
port.

• Incomplete software metrics data
weakens software decision making.
For high-assurance software, Ada is

still often the best solution. In this, the
NRC independently validated what the

Figure 1. Trend in DoD high-order language use
1975-1994.

Why Programming Languages Matter
Lt. Col. John A. Hamilton Jr.

U.S. Military Academy

The Department of Defense (DoD) policy that requires the exclusive use of Ada in
DoD weapons systems has been rescinded. However, because of its robustness and
valuable strengths, such as strong typing, ease of learning, and object-oriented
design, Ada remains the language of choice for systems where human life is at
stake.

Ada

CROSSTALK The Journal of Defense Software Engineering 5December 1997

Ada community has been saying for
years. However, software engineering is
not a one-size-fits-all proposition. Based
on these findings, the NRC made the
following recommendations:
• Require Ada for DoD war-fighting

software.
• Drop Ada requirement for other

DoD software.
• Invest $15 million yearly for Ada

infrastructure - or drop Ada require-
ment.

• Program language selection should
be part of a rational software engi-
neering process.
The ASD(C3I) decided to accept all

of the NRC recommendations save one,
the mandate for war-fighting software. It
would be extremely difficult to precisely
define what constitutes war-fighing
software and what does not. It would be
interesting to see which program manag-
ers chose to classify their programs as
“non-war fighting.”

However, the best summary of the
NRC report comes from then Lt. Gen.
Paige who wrote,

The study is a good one and I am
prepared to accept and implement
all of their recommendations with
one exception. I believe DoD
should no longer require Ada for
any of its systems but continue to
support it as the preferred lan-
guage, particularly for our weapon
systems and C4ISR systems. By
doing this we will take the lone
contentious point of resentment
out of the DoD software process,
but with the other recommenda-
tions such as the requirement for a
software engineering plan, I believe
we will get the desired results with-
out mandating any particular
programming language.

I respectfully applaud Paige’s bold
decision to end the Ada mandate and
implement the remaining NRC recom-
mendations. Paige’s April 29, 1997 di-
rective is available on the Ada Informa-
tion Clearinghouse Web site. Ada should
be used where it makes engineering
sense. In military applications, reliability
makes engineering sense. For military
systems with 20-year plus lifecycles, a

maintainable language makes engineer-
ing sense. Ada will win where engineer-
ing factors are part of the decision
process.

Reliability Counts
Make no mistake, war is about killing
people and breaking things. Military
weapons systems are designed to be
lethal and must be reliably controlled.
Unreliable military software is frighten-
ing. We often hear of Ada’s strong typ-
ing. An implicit-type conversion that
results in a one-degree rounding error
will, at a range of 40 kilometers, put
ordinance 700 meters off target. In a
close combat situation, a 700-meter
error can result in friendly casualties.
Reliability is important. That this soft-
ware was procured using “best commer-
cial practices” and was determined to be
“good enough” for military use is likely
to be of small comfort to a gold star
mother. Military software is a life or
death proposition. People who do not
understand this should get out of the
business.

An excellent series of articles entitled
“The Debugging Scandal,” appeared in
the April, 1997 issue of Communications
of the ACM [2]. In his critique of one of
the articles, “My Hairiest Bug War Sto-
ries,” Dr. John McCormick makes the
following observations:

In [the] data, the use of Ada would
have identified 35 percent of ALL
the faults reported in the usenet
bug reports. Ada would have iden-
tified 88 percent of those that were
the “direct responsibility” of the
programmer (e.g. array bounds

violations, scalar range violations,
uninitialized variables, etc.). A 35
percent reduction is a significant
improvement and worth serious
consideration when selecting a
programming language. The 88
percent reduction is probably an
appropriate measure of Ada’s im-
pact on classroom assignments,
which are done in a more con-
trolled environment than real-
world software.

Programming languages matter.
Compilers that do strong checking pro-
duce fewer run-time errors. There are
entire classes of errors that some pro-
gramming languages will not compile.

Ada in Education
Contrary to popular mythology, Ada is a
remarkably easy language to learn. In the
spring of 1996, a controlled experiment
conducted at the U.S. Military Academy.
An introductory course was conducted
with two instructors each teaching two
sections using Ada and two sections
using Pascal. Recall that Pascal was a
programming language specifically de-
signed for instructional purposes. The
experiment demonstrated that students
can go further and faster in Ada than in
Pascal. This was a particularly significant
finding given the controlled environ-
ment and rigorous standards of instruc-
tion at the Academy.

This is an important consideration
for the education and training commu-
nities since it is generally agreed that
Pascal is coming to the end of its useful-
ness. The unsuitability of C and C++ for
educational purposes is well docu-

Figure 2. Breakout of programming language
employment in DoD weapons systems.

Figure 3. Breakout of programming language
employment in DoD automated information
systems.

Why Programming Languages Matter

6 CROSSTALK The Journal of Defense Software Engineering December 1997

mented. The confusing syntax is detailed
in [3] and the lack of standardization of
C++ is discussed in [1].

Ada’s suitability for education should
be of particular interest to those who
complain that there are “no Ada pro-
grammers.” One wonders what became
of the programmers who wrote those 50
million lines of Ada currently in the
inventory. It is well known that there is
currently a serious shortage of skilled
software personnel. Any hard skill com-
puter scientist can learn Ada quickly. It is
well established that Ada enforces good
software engineering practices. This is
not only important in education and
training but also important for opera-
tional development. The choice of a
programming language matters.

The Future of Ada
Dropping the mandate does not mean
dropping Ada from defense programs.
Inside the beltway, there is no stopping a
catchy analogy. Ada is often compared to
Betamax videocassette recorders (VCRs),
the analogy being that there is no ques-
tion of the technical superiority of the
Beta format over VHS, yet Beta format
VCRs failed to capture the consumer
market. Like many analogies, this one
does not go far enough. In fact, Beta
format VCRs continue to be used by
video professionals specifically because
of the technical superiority of the Beta
format. Just because Blockbuster doesn’t
stock Beta format videotapes doesn’t
impact on the engineering decisions
made by video professionals.

The technical merit of Ada is not an
issue. Ada is often attacked with a so-
called “business” argument. This busi-
ness argument is disturbing because
military software and commercial soft-
ware are simply not the same. Consider a
program to compute field artillery gun-
nery solutions. One could certainly write
such a program using a commercial
spreadsheet. Unfortunately, even mature

spreadsheets have undocumented nu-
meric errors that arise from time to time.
Although this can (and has) seriously
affected a business, it is unacceptable to
have this occur when firing live rounds.

It almost certainly does not make
business sense to use all the extra safety
features provided by an Ada compiler for
a commercial product that will be on the
shelf less than 18 months. The business
case that applies to military systems is
the lifecycle argument. Although some-
times difficult to rigorously quantify, the
software maintenance advantages of Ada
are not seriously disputed. With software
maintenance costs running 70 percent to
90 percent of software lifecycle costs, it is
unclear how Ada can be said to lose the
“business case.” Programming languages
matter when considering software main-
tenance.

Military software is not the same as
consumer software. You cannot buy “off-
the-shelf ” fire control systems. Ada was
designed to build software to military
specifications. Where reliability counts
and where software engineering consid-
erations factor into project manage-
ment, Ada will continue to thrive. We
will not win wars through superior
word processing.

Conclusion
Language selection should be part of a
rational software engineering process.
This process cannot merely manage
away the very real technical issues any
nontrivial software project faces. Ada
cannot win the technical battle in an
environment where technical issues are
often poorly understood. Programming
languages matter and can make a differ-
ence in reliability, software design, main-
tenance, and education. The Depart-
ment of Defense has a vital interest in
standard, reliable software. As noted by
the National Research Council [4], that
requirement is often best met through
the use of Ada. u

About the Author
Lt. Col. John A. (Drew)
Hamilton Jr., U.S.
Army, is currently as-
signed to the U.S. Mili-
tary Academy Depart-
ment of Electrical
Engineering and Com-

puter Science. He most recently served on
special assignment as chief of the Ada Joint
Program Office in the Defense Systems
Information Agency. Previously, he served
as chief of the Officer Training Division at
the Computer Science School at Fort
Gordon, Ga. He has a bachelor’s degree in
journalism from Texas Tech University,
where he was commissioned in Field Artil-
lery, a master’s degree in systems manage-
ment from the University of Southern
California, and an master’s degree in com-
puter science from Vanderbilt University.
He also holds a doctorate in computer
science at Texas A&M University. He co-
wrote Distributed Simulation, published
by CRC Press this year, with Maj. D. A.
Nash and Udo W. Pooch. Hamilton is a
distinguished graduate of the Naval War
College.

Electrical Engineering & Computer Science
U.S. Military Academy
West Point, NY 10996
Email: dj7560@eecs1.eecs.usma.edu

References
1. Ben-Ari, M. and K. Henney, “A Critique

of the Advanced Placement C++ Subset,”
Special Interest Group on Computer Sci-
ence Education Bulletin, Vol. 29, No. 2,
September 1991, pp. 7-10.

2. Eisenstadt, M., “My Hairiest Bug War
Stories,” Communications of the ACM,
Vol. 40, No. 4, April 1997, pp. 30-37.

3. Mody, R.P., “C in Education and Soft-
ware Engineering,” Special Interest Group
on Computer Science Education Bulletin,
Vol. 23, No. 3, September 1991, pp. 45-
56.

4. Computer Science and Telecommunica-
tions Board, National Research Council,
Ada and Beyond, Software Policies for the
Department of Defense, National Acad-
emy Press, Washington, D.C., 1997.

Ada

